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A numerical model is developed to study the Soret and Dufour effects on MHD boundary layer flow of a 
power-law fluid over a flat plate with velocity, thermal and solutal slip boundary conditions. The governing 
equations for momentum, energy and mass are transformed to a set of non-linear coupled ordinary differential 
equations by using similarity transformations. These non-linear ordinary differential equations are first linearized 
using a quasi-linearization technique and then solved numerically based on the implicit finite difference scheme 
over the entire range of physical parameters with appropriate boundary conditions. The influence of various 
governing parameters along with velocity, thermal and mass slip parameters on velocity, temperature and 
concentration fields are examined graphically. Also, the effects of slip parameters, the Soret and Dufour number 
on the skin friction, Nusselt number and Sherwood number are studied. Results show that the increase in the 
Soret number leads to a decrease in the temperature distribution and to an increase in concentration fields. 
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1. Introduction 
 
 It is well known that most fluids which are encountered in chemical and allied processing 
applications do not satisfy the classical Newton’s law of viscosity and are accordingly known as non-
Newtonian fluids. The fluids which do not obey Newton’s law of viscosity, i.e., there exists a non-linear 
relationship between shear stress and velocity gradient are called non-Newtonian fluids. The study of non-
Newtonian fluid has been of much interest to scientists because some industrial materials are non-
Newtonian. In some industries (such as in food, polymer, petrochemical, rubber, paint and biological 
industries) fluids with non-Newtonian behaviors are encountered. The most common type of non-Newtonian 
fluids are power law fluids for which the shear stress  is given by  
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  where
n n 1

0 0
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where 0  is the dynamic coefficient of viscosity is, 
u

y




 is the shear rate and n is the power-law index. It 

needs to be mentioned that, for a non-Newtonian power law model, the case of n < 1 is associated with 
pseudo-plastic fluids (shear thinning fluids), n =1 corresponds to Newtonian fluids and n > 1 applies to the 
case of dilatants fluids (shear thickening fluids).  
 The layer of the fluid that flows directly adjacent to its bounding surface is called the boundary layer. 
The boundary layer is an extremely important concept in fluid mechanics and has been studied extensively 
for decades. Fluid motion in the boundary layer is influenced by a number of factors namely fluid viscosity, 
external forces, bounding surface characteristics and so on. Sakiadas [1] was the first to consider the 
boundary layer flow at a continuous solid surface with constant speed. Crane [2] extended the work of 
Sakiadas [1] to the flow caused by an elastic sheet moving in its own plane with a velocity varying linearly 
with the distance from a fixed point. This work was later extended by many authors [3, 4, 5] by considering 
the flow, heat and mass transfer under different physical situations. Historically, the boundary layer flow past 
a flat plate was first considered by Blasius [6] to illustrate the application of Prandtl’s boundary layer theory. 
Ali [7] discussed the problem of coupled heat and mass transfer by natural convection from a vertical 
impermeable semi-finite flat plate embedded in a non-uniform non-metallic porous medium in the presence 
of thermal dispersion effects. Pop and Takhar [8] studied thermal convection near a partly insulated vertical 
flat plate embedded in a saturated porous medium. These investigators, however, restricted their analyses to 
the flow of Newtonian fluids.  
 The theory of non-Newtonian fluids offers mathematicians, engineers and numerical specialists 
varied challenges in developing analytical and numerical solutions for highly non-linear equations. However, 
due to the practical significance of these non-Newtonian fluids, many authors have presented various non-
Newtonian models, e.g., Elabassbeshy et al. [9], Nadeem et al. [10], Lukaszewicz [11] and Kishan and 
Shashidar [12]. The study of boundary layer MHD flow towards a shrinking/stretching sheet has gained 
considerable attention of many researchers because of its frequent occurrence in industrial technology, 
geothermal application and high temperature plasmas applicable to nuclear fusion energy conversion and 
MHD power generation systems. Muhamin and Khamis [13] studied the effects of heat and mass transfer on 
the non-linear MHD viscous fluid flow over a shrinking sheet in the presence of suction. Mostafa A.A. 
Mahmaud [14] studied the non-uniform heat generation effect on heat transfer of a non-Newtonian power-
law fluid over a non-linear stretching sheet. MHD mixed convection stagnation-point flow of a power-law 
non-Newtonian nanofluid towards a stretching surface with radiation and heat source/sink was analyzed by 
Madhu and Kishan [15]. Heat and mass transfer with hydrodynamic slip over a moving plate in porous 
media was investigated by Hamad et al. [16] via the Runge-Kutta-Fehlberg fourth-fifth order method. Over 
the years, considerable amount of literature has addressed the problem of fluid flow and heat transfer past a 
flat plate, especially in Newtonian fluids and to a limited extent in power-law fluids. Olajuwon [17] studied 
the convection heat and mass transfer in a power-law fluid over a flat plate in the presence of adverse 
pressure gradient. Kishan and Shashidar [18] studied MHD effects on a non-Newtonian power-law fluid past 
a continuously moving porous flat plate. 
 In the above investigations, Soret and Dufour’s effects were neglected. However, when heat and 
mass transfer occurs simultaneously in a moving fluid the relations between the fluxes and driving potentials 
are of a more intricate nature. It has been found that an energy flux can be generated not only by a 
temperature gradient but also by a concentration gradient. The Soret effect, for instance, has been utilized for 
isotope separation and in mixtures between gases with very light molecular weight (H2, He). For medium 
molecular weight (N2, air) the Dufour effect was found to be of considerable magnitude such that it cannot be 
neglected. Postelnicu [19] used an implicit finite difference scheme to investigate the influence of a magnetic 
field on heat and mass transfer by natural convection from vertical surfaces in a porous media considering 
the Soret and Dufour effects. Rashidi et al. [20] discussed heat and mass transfer for MHD viscoelastic fluid 
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flow over a vertical stretching sheet with considering the Soret and Dufour effects. The Soret and Dufour 
effects on MHD convective heat and mass transfer of a power-law fluid over an inclined plate with variable 
thermal conductivity in a porous medium were studied by Pal and Chatterjee [21].  
 In the above stated studies, no-slip thermal and solutal boundary conditions are considered. But, 
there might be a natural situation where no-slip boundary condition may not be applicable. In such 
circumstances, we may be forced to consider the slip boundary condition. Therefore, this study tries to fulfill 
this gap. Ibrahim and Shanker [22] investigated MHD boundary layer flow and heat transfer of a nanofluid 
past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions. Recently, 
Hirschhorn et al. [23] studied MDH boundary layer slip flow and heat transfer of a power-law fluid over a 
flat plate. This paper extends earlier works by examining the Soret and Dufour effects on MHD boundary 
layer heat and mass transfer of a power-law fluid over a flat plate with velocity, thermal  and solutal slip 
boundary conditions. 
 
2. Mathematical formulation 
 
 Consider a steady, laminar two-dimensional heat and mass transfer flow of an incompressible 
electrically conducting, viscous fluid obeying power-law model over a flat plate in the presence of transverse 
magnetic field B. The x-axis is taken along the direction of the flow and the y-axis normal to it. The thermo-
physical properties of the sheet and the fluid are assumed to be constant except for the viscosity of the 
power-law fluid which depends on the shear rate. We assume that the Dufour effect may be described by a 
second-order concentration derivative with respect to the transverse coordinate in the energy equation 
whereas the Soret effect is described by second-order temperature derivative in the mass-diffusion equation. 
With these assumptions and invoking the boundary layer approximations, the governing equations for the 
boundary layer flow, heat and mass transfer are  
 

  
u u

0
x y

 
 

 
, (2.1) 
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 Subject to the boundary conditions  
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where u and v are the velocity components in the directions of the x and y axes respectively,   is the fluid 

density,   is the constant electrical conductivity of the fluid, B is the magnetic field strength,  
K

 


 is the 

kinematic viscosity, K is the consistency coefficient, U  is the free stream velocity, T is temperature, 

p

k

c
 


 is the thermal diffusivity, k is the thermal conductivity, pc  is the specific heat capacity of the fluid, 

cs is the concentration susceptibility, kT is the thermal diffusion ratio, Dm is the coefficient of mass 
diffusivity.  

 Also, Re  1 xL L  is the velocity slip factor with L being the initial value at the leading edge, 

Re  1 xD D  is the thermal slip factor with D being the initial value at the leading edge and Re  1 xP P  is 

the concentration slip factor with P being the initial value at the leading edge. Here, Tw and Cw are the 
temperature and concentration of the flat plate, T∞ and C∞  are the free stream temperature and concentration, 

and Re
2 n n

x
U x

K


 

  is the local Reynolds number. 

 The momentum, energy and mass equations can be transformed to a non-linear boundary value 
problem involving a system of coupled ordinary differential equations. In particular, we introduce the 
dimensionless similarity variables used by Reddy et al. [24] and defined as  
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       , wT T T T         (2.6c) 

 
         wC C C T         (2.6d) 

 
where η is the similarity variable, Ψ is the stream function, ,  and  f    are the dimensionless similarity 
function, temperature and concentration respectively. Here b is the characteristic length. 
 The velocity components u and v in terms of the stream function ( , )x y  are given by 
 

  , .u v
y x

 
  
 

  (2.7) 

 

The generalized Reynolds number Re is defined by Re .
2 n nU b

K




         (2.8) 

 
 Introducing the similarity transformations (2.6) and (2.7), the continuity equation is satisfied whereas 
the momentum, energy and mass equation given by Eqs (2.2), (2.3) and (2.4) are transformed the coupled 
non-linear ordinary differential equations of the form 
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 Boundary conditions (2.5a) and (2.5b) are transformed into 
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where A1, B1 and C1 are, respectively, the velocity, temperature and concentration slip parameters, which are 
further defined as  
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In practical applications, the physical quantities of principal interest are the skin-friction coefficient Cf, local 
Nusselt number Nux and local Sherwood number Shx which indicate the physical wall shear stress, rate of 
heat transfer and the rate of mass transfer, respectively. These physical quantities are defined respectively as  
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where the wall shear stress τw, the heat flux at the wall qw and the mass flux at the wall Jw are defined as  
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3. Numerical procedure 
 
 The combined effects of various physical parameters will have a great impact on heat and mass 
transfer characteristics. The non-linearity of the basic equations and additional mathematical difficulties 
associated with the solution part has led us to use a numerical method. In this section, an efficient implicit 
finite difference scheme along with quasi-linearization technique have been employed to analyze the flow 
model for the above coupled ordinary differential Eqs (2.9), (2.10) and (2.11) along with the boundary 
conditions (2.12) for different values of the governing parameters. The transformed non-linear differential 
Eq.(2.9) is first linearized by quasi-linearization technique discussed by Bellman and Kalaba [25]. Now by 
applying the implicit finite difference scheme, these equations are transformed to system of linear equations. 
To carry out the computational procedure, first the momentum equation is solved which gives the values of f 
necessary for obtaining the solution of coupled energy and concentration equations under the boundary 
conditions (2.12) by the Gauss Seidal iteration procedure. The numerical solutions of  are considered as 
(n+1)th order iterative solutions and F are the nth order iterative solutions. To prove convergence of the finite 
difference scheme, the computation is carried out for slightly changed value of h by running same program. 
No significant change was observed in the value. At every position, the iteration process continues until the 
convergence criterion for all the variables, 10-5 is achieved. 
 
4. Results and discussions 
 
 Numerical computations are carried out for several sets of values of the governing parameters, 
namely, the magnetic parameter M, power-law index n, Prandtl number Pr, Lewis number Le, velocity slip 
parameter A1, temperature slip parameter B1, concentration slip parameter C1, Soret number Sr and Dufour 
number Du. In order to get a clear insight into the physical problem, numerical results are displayed with the 
help of graphical illustrations. Graphical illustration of the results is very useful and practical to discuss the 
effect of different parameters. 
 To validate our results, the numerical computations of skin friction coefficients, Nusselt number and 
Sherwood number which are respectively proportional to    ,  and ( ) f 0 0 0    . are presented in a 

tabular form. Tables 1 – 5 show the effect of the power-law index n, velocity slip parameter A1, temperature 
slip parameter B1, concentration slip parameter C1, Soret number Sr and Dufour number Du on the 

coefficient of skin friction  0f  , Nusselt number  0  and Sherwood number (0)  respectively. It 

can be seen that the effect of the power-law index n is to decrease the skin friction coefficient, Nusselt 
number and Sherwood number. The coefficient of skin friction, Nusselt number and Sherwood number 
decrease with the increase in the velocity slip parameter, temperature slip parameter and concentration slip 
parameter respectively. It is evident from Tabs 4 and 5 that an increase in the Soret number (or decrease in 
the Dufour number) decreases the Nusselt number but increases the Sherwood number. 
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Table 1.  Numerical results of the skin friction coefficient ( )f 0  for different values of the velocity slip 
parameter A1 with M = 0.2, Pr = 0.7, Le = 1.0, Sr = 0.04, Du = 0.02, B1 = 0, C1 =0. 

 
 Values of ( )f 0  

A1 n = 0.5 n = 1.0 n = 1.5 
0 0.302737 0.136838 0.11551 

0.2 0.25936 0.116271 0.098584 
0.4 0.224204 0.100644 0.085674 
0.6 0.196388 0.088525 0.075609 

 
Table 2.  Numerical results of the Nusselt number ( )0  for different values of the temperature slip 

parameter B1 with M = 0.2, Pr = 0.7, Le = 1.0, Sr = 0.04, Du = 0.02, A1 = 0, C1 =0. 
 

 Values of ( )0  

B1 n = 0.5 n = 1.0 n = 1.5 
0 0.307352 0.258658 0.247737 

0.2 0.286032 0.244551 0.235126 
0.4 0.267646 0.231998 0.223833 
0.6 0.2516 0.220731 0.21361 

 
Table 3.  Numerical results of the Sherwood number ( )0  for different values of the concentration slip 

parameter C1 with M = 0.2, Pr = 0.7, Le = 1.0, Sr = 0.04, Du = 0.02, A1 = 0, C1 =0. 
 

 Values of ( )0  

C1 n = 0.5 n = 1.0 n = 1.5 
0 0.261925 0.236719 0.231336 

0.2 0.244299 0.223908 0.219543 
0.4 0.228995 0.212503 0.208896 
0.6 0.215569 0.202133 0.199188 

 
Table 4.  Numerical results of the Nusslet number ( )0  for different values of the Soret and Dufour 

number with M = 0.2, Pr = 0.7, Le = 1.0, A1 = 0, B1=0, C1 =0. 
 

 Values of ( )0  

Sr, Du n = 0.5 n = 1.0 n = 1.5 
0.08,0.01 0.330075 0.269637 0.255924 
0.04, 0.02 0.307352 0.258658 0.247737 
0.02, 0.04 0.261925 0.236719 0.231336 
0.01, 0.08 0.171099 0.192867 0.198493 

 
Table 5.  Numerical results of the Sherwood number ( )0  for different values of the Soret and Dufour 

number with M = 0.2, Pr = 0.7, Le = 1.0, A1 = 0, B1=0, C1 =0. 
 

 Values of ( )0  

Sr, Du n = 0.5 n = 1.0 n = 1.5 
0.08,0.01 0.171099 0.192867 0.198493 
0.04, 0.02 0.261925 0.236719 0.231336 
0.02, 0.04 0.307352 0.258658 0.247737 
0.01, 0.08 0.330075 0.269637 0.255924 
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 Figure 1 demonstrates the dimensionless velocity profile f   for different values of the magnetic 

field parameter M. The general trend is that f   increases monotonically as the space variable increases. The 

effect of increasing values of the magnetic field parameter results in flattering of velocity profile f   in all 
the cases. Hence it is very clear that the transverse magnetic field opposes the transport phenomena. This is 
due to the fact that the increase in the magnetic number leads to the enhancement of Lorentz force and hence 
Lorentz force produces more resistance to transport phenomena. Figure 2 display the distinction of velocity 
profile with respect to variation in the velocity slip parameter. On observing these figures, the velocity graph 
increases with the increase in the values of the velocity slip parameter A1.  
 

 
 (a) Pseudo Plastic fluids (n = 0.5)                               (b) Newtonian fluids (n = 1.0) 
 

 
 (c) Dilatant fluids (n =1.5) 

 
Fig.1.  Variation of velocity profiles for various values of magnetic field parameter M with Pr = 0.7,  

Le = 1.0, Sr = 0, Du = 0, A1 = 0, B1 = 0, C1 = 0. 
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(a) Pseudo Plastic fluids (n = 0.5)                                 (b) Newtonian fluids (n = 1.0) 

  

 
                                  (c) Dilatant fluids (n =1.5) 
 
Fig.2.  Variation of velocity profiles for various values of velocity slip parameter A1 with Pr = 0.7, Le = 1.0, 

Sr = 0, Du = 0, M = 0, B1 = 0, C1 = 0. 
 
 The influence of the Prandtl number Pr on the heat transfer process in shown in Fig.3. These graphs 
reveal that the temperature decreases with an increase in the Prandtl number. This is because thermal 
boundary layer thickness decreases as the Prandtl number increases. Hence the rate of thermal diffusion is 
slow with an increase in the Prandtl number. The effect of thermal slip parameter B1 on the temperature 
profiles is shown in Fig.4. It is noticed from the profiles that the wall temperature θ(0) and the thermal 
boundary layer thickness decreases with the increase in the thermal slip parameter. Figure 5 illustrates the 
variation of concentration in response to the change in the Lewis number Le. The graphs reveal that the 
concentration decreases with the increase in the Lewis number. This is probably due to the fact that the 
increase in Le decreases the mass diffusivity and hence the concentration boundary layer descends. Figure 6 
demonstrates the variation of concentration profiles in response to the change in the concentration slip 
parameter C1. It can be noticed from the graphs that by increasing C1, the wall ccentration φ(0) and 
concentration profiles decrease and hence concentration boundary layer thickness decreases. 
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                (a) Pseudo Plastic fluids (n = 0.5)                              (b) Newtonian fluids (n =1.0) 
 

 
(c) Dilatant fluids (n = 1.5) 

 
Fig.3.  Variation of temperature profiles for various values of Prandtl number Pr with M = 0.2, Le = 1.0,  

Sr = 0.04, Du = 0.02, A1 = 0, B1 = 0, C1 = 0. 
 

 
   (a) Pseudo Plastic fluids (n = 0.5)                                         (b) Dilatant fluids (n = 1.0) 
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                                              (c) Dilatant fluids (n = 1.5) 
 

Fig.4.  Variation of temperature profiles for various values of temperature slip parameter B1 with M = 0.2, 
Pr = 0.7, Le = 1.0, Sr = 0.04, Du = 0.02, A1 = 0, C1 = 0. 

 

 
 (a) Pseudo plastic fluids (n = 0.5)                                      (b) Newtonian fluids (n = 1.0) 
 

   
                        (c) Dilatant fluids (n = 1.5) 
 

Fig.5.  Variation of concentration profiles for various values of Lewis number Le with M = 0.2, Pr = 0.7,  
Sr = 0.04, Du = 0.02, A1 = 0, B1 = 0, C1 = 0. 
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 (a) Pseudo plastic fluids (n = 0.5)                                     (b) Newtonian fluids (n = 1.0) 
 

 
                                      (c) Dilatant fluids (n=1.5) 
 
Fig.6.  Variation of concentration profiles for various values of concentration slip parameter C1 with  

M = 0.2, Pr = 0.7, Le = 1.0, Sr = 0.04, Du = 0.02, A = 0, B = 0. 
 
 
 Figure 7 displays the variation of velocity, temperature and concentration profiles with the power-
law index n. It is evident from the figures that the velocity profiles decrease with an increase in the power-
law index whereas the temperature and concentration profiles increase with an increase in the power-law 
index. The variations of the Soret and Dufour number on the temperature and concentration fields are 
displayed respectively in Figs 8 and 9. The mass flux due to the temperature gradient is defined as the Soret 
effect whereas enthalpy flux due to concentration gradient - the Dufour effect. These graphs reveal that a 
decrease in the Soret number (or increase in the Dufour number) enhances the temperature profiles and 
reduces the concentration profiles. It is due to the fact that an increase in the Soret number cools down the 
fluid and hence the temperature reduces. 
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  (a) Velocity profiles                                             (b) Temperature profiles 
 

 
                                              (c) Concentration profiles 
 
Fig.7.  Variation of velocity, temperature and concentration profiles for various values of power-law index n 

with M = 0.2, Pr = 0.7, Le = 1.0, Sr = 0.04, Du = 0.02, A1 = 0, B1 = 0, C1=0. 
 

 
 (a) Pseudo plastic fluids (n = 0.5)                                    (b) Newtonian fluids (n = 1.0) 
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                                   (c) Dilatant fluids (n = 1.5) 
 

Fig.8.  Variation of temperature profiles for various values of Soret number and Dufour number with  
M = 0.2, Pr = 0.7, Le = 1.0, A1 = 0, B1 = 0, C1 =0. 

 

 
        (a) Pseudo plastic fluids (n = 0.5)                           (b) Newtonian fluids (n = 1.0) 
 

 
                                      (c) Dilatant fluids (n = 1.5) 

 

Fig.9.  Variation of concentration profiles for various values of Soret number and Dufour number with  
M = 0.2, Pr = 0.7, Le = 1.0, A1 = 0, B1 = 0, C1 =0. 
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Conclusions 
 
 The present study describes the heat and mass transfer of a power-law fluid flow over a flat plate in 
the presence of a transverse magnetic field by taking into account the Soret and Dufour effects. From the 
above investigation, the following conclusions may be drawn: 
1. The higher the velocity, temperature and concentration slip parameters, the lower the coefficient of skin 

friction, Nusselt number and Sherwood number, respectively. 
2. A high thermal diffusion (Soret number) effect enhances the rate of heat transfer and reduces the rate of 

mass transfer. 
3. Velocity reduces with the high magnetic field effect. 
4. Velocity at the surface of the plate decreases with the increase in the velocity slip parameter. 
5.  The thickness of the boundary layer decreases with the increase in the Prandtl number and the 

temperature slip parameter. 
6. Concentration boundary layer thickness decreases with the increase in the Lewis number and the 

concentration slip parameter. 
7. The effect of the Soret number is to reduce the temperature and enhance the concentration.  
 
Nomenclature  
 
 A1  – velocity slip parameter 
 B  – magnetic field intensity 
 B1  – thermal slip parameter 
 C  – concentration of the fluid 
 C1  – concentration slip parameter 
 Cf  – skin friction coefficient  
 C∞  – ambient concentration 
 cp  – concentration susceptibility 
 Dm  – coefficient of mass diffusion 
 Du  – Dufour number 
 D1  – thermal slip factor 
 f  – dimensionless stream function 
 jw  – rate of mass transfer 
 k  – thermal conductivity 
 kT  – thermal diffusion ratio 
 Le  – Lewis number 
 L1  – velocity slip factor 
 M  – magnetic field parameter 
 Nu  – Nusselt number 
 n  – power-law fluid index 
 P1  – concentration slip factor 
 Pr  – Prandtl number 
 qw  – heat flux 
 Re  – Reynolds number 
 Shx  – local Sherwood number 
 Sr  – Soret number 
 T  – temperature of the fluid 
 Tm  – mean fluid temperature 
 Tw  – temperature at the wall 
 T∞  – ambient temperature 
 U   – free stream velocity  

 u, v  – velocity components along and perpendicular to the plate 
 x, y  – coordinates along and perpendicular to the plate 
 α  – thermal diffusivity  



704 K.Saritha, M.N.Rajasekhar and B.S.Reddy 

     – dimensionless similarity variable 
     – dimensionless temperature 
 μ  – magnetic permeability 
 μ0  – dynamic coefficient of viscosity 
    – kinematic viscosity 
 ρ  – density 
     – electrical conductivity 
     – tensor of stress 
    – dimensionless concentration 
     – stream function 
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